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ABSTRACT 1 

BACKGROUND 2 

The burden of asymptomatic left ventricular dysfunction (LVD) is greater than that of heart failure; however, 3 

a cost-effective tool for asymptomatic LVD screening has not been well validated. We aimed to prospectively 4 

validate an artificial intelligence (AI)-enabled electrocardiogram (ECG) algorithm for asymptomatic LVD 5 

detection and evaluate its cost-effectiveness for opportunistic screening. 6 

METHODS 7 

In this prospective observational study, patients undergoing ECG at outpatient clinics or health check-ups 8 

were enrolled in two hospitals in Taiwan. Patients were stratified into LVD (LVEF <= 40%) risk groups using 9 

a previously developed ECG algorithm. The performance of AI-ECG was used to conduct a cost-effectiveness 10 

analysis of LVD screening compared with no screening. Incremental cost-effectiveness ratio (ICER) and 11 

sensitivity analyses were employed to examine the cost-effectiveness and robustness of the results. 12 

RESULTS 13 

Among the 29,137 patients, the algorithm demonstrated area-under-the-curves of 0.984 and 0.945 for 14 

detecting LVD within 28 days in the two hospital cohorts. For patients not initially scheduled for an 15 

echocardiogram, the algorithm predicted future echocardiograms (high-risk, 46.2%; medium-risk, 31.4%; 16 

low-risk, 14.6%) and LVD at 12 months (high-risk, 26.2%; medium-risk, 3.4%; low-risk, 0.1%). Opportunistic 17 

screening with AI-ECG could result in a negative ICER of -$7,439 for patients aged 65, with consistent cost-18 

savings across age groups and particularly in men. Approximately 91.5% of the cases were found to be cost-19 

effective at the willingness-to-pay of $30,000 in the probabilistic analysis. 20 

CONCLUSIONS 21 

The use of AI-ECG for asymptomatic LVD risk stratification is promising, and opportunistic screening in 22 

outpatient clinics has the potential to save costs.  23 

 24 
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Introduction 1 

Heart failure (HF) affects over 23 million people worldwide and has a high rate of morbidity and mortality, 2 

leading to a serious global public health problem1. The detection of HF mainly relies on clinical presentations 3 

such as dyspnea on exertion, orthopnea, and peripheral edema. However, some patients may have decreased 4 

left ventricular (LV) function before the appearance of obvious HF symptoms. This results in a prevalence of 5 

asymptomatic LV dysfunction (LVD) in the general population of approximately 3–6%, which is three to four 6 

times higher than that in clinical HF patients2, 3. In Taiwan, the prevalence of LVD varied between 1.4% (LV 7 

ejection fraction [LVEF] < 40%) and 6.1% (LVEF < 50%)4. Patients with asymptomatic LVD have an 8.4% 8 

risk of progression to clinical HF every year, and the risk of mortality is 1.6 times higher in patients with 9 

asymptomatic LVD compared to those with normal LVEF3, 5. Early detection of asymptomatic LVD and 10 

follow-up with adequate treatment can effectively reduce the risk of incident HF and mortality5. The brain-11 

type natriuretic peptide (BNP) has been suggested as a cost-effective tool for asymptomatic LVD screening; 12 

however, its routine clinical use is limited by the possibility of false positives in various conditions6. 13 

Furthermore, echocardiography, which is an accurate assessment tool for LVD, requires specialized technical 14 

skills, and is unsuitable for widespread screening. Therefore, a precise and accessible screening test is required 15 

to identify individuals at risk of asymptomatic LVD.  16 

Deep-learning techniques, an extensive field of artificial intelligence (AI), have been used to identify 17 

cardiovascular diseases using electrocardiograms (ECGs) with cardiologist-level precision7. Studies have 18 

shown that deep learning algorithms can identify LVD with area-under-the-curve (AUC) values exceeding 19 

0.908, 9. Screening for asymptomatic LVD using an AI-enabled ECG is promising. A study conducted by Tseng 20 

et al. in the United States found that screening for asymptomatic LVD using AI-ECG at ages 55 and 65 was 21 

cost-effective, but not at age 75, at a willingness-to-payA threshold of $50,00011. Due to advanced age, the 22 

limited improvement in effectiveness resulting from screening and subsequent treatment leads to a higher 23 

incremental cost-effectiveness ratio (ICER) at age of 75 compared to the age of 65. However, the cost of 24 

                                                       
AThis technique asks people to state explicitly the maximum amount they would be willing to pay to receive a particular benefit. It 

is based on the premise that the maximum amount of money an individual is willing to pay for a commodity is an indicator of the 

value to them of that commodity.10 
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screening, subsequent examinations, and treatment varies greatly because of differences in economic and 1 

health insurance systems between regions, which play a crucial role in determining cost-effectiveness.  2 

In the present study, we aimed to validate the performance of AI-enabled ECG in detecting asymptomatic 3 

LVD at outpatient clinics in a prospective cohort. Furthermore, we conducted an economic evaluation to assess 4 

the cost-effectiveness of screening for asymptomatic LVD using AI-enabled ECG compared with no screening 5 

under a social insurance system.  6 

 7 
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Materials and Methods 1 

Study design and participants 2 

In this prospective observational study, patients who underwent an ECG examination at either the Tri-Service 3 

General Hospital (TSGH), a tertiary center hospital, or the Tingzhou branch of TSGH, a district hospital in 4 

Taiwan, were recruited between March 2020 and February 2022. Patients who were 18 years of age or older 5 

and had undergone an ECG in outpatient departments or health checkups were eligible to participate in the 6 

screening program. Patients who underwent ECG examinations in the emergency department or during 7 

hospitalization were excluded to avoid the inclusion of patients with obvious heart failure. Patients with a 8 

history of heart failure or prior echocardiography were also excluded. The recruited patients might 9 

subsequently undergo transthoracic echocardiography arranged by clinicians because of various indications, 10 

such as breathlessness, peripheral edema, chest pain, arrhythmia, or suspected valvular heart disease. The 11 

timing and results of the transthoracic echocardiograms of the recruited patients after the index ECG were 12 

analyzed. The study was reviewed and approved by the Institutional Ethics Committee of TSGH 13 

(C202105049). 14 

Procedures 15 

The use of an AI-based alarm system (AI-S) is described in this study. AI-S is designed to predict the LV 16 

ejection fraction (EF) automatically by analyzing ECGs uploaded in real time. The system uses a convolutional 17 

neural network trained on 58,431 independent pairings of 12-lead ECGs and echocardiograms from the 18 

TSGH8. The training process was published in our previous work8 and it was reported in the Supplementary 19 

Methods. AI-S automatically calculates LVEF, with LVEF equal to or less than 40% defined as LVD. The AI-20 

S uses the maximum Youden's index of AUC to establish a medium-risk LVD cutoff value and the area under 21 

the precision-recall curve (PRAUC) to establish a high-risk LVD cutoff value12. Every ECG was given an AI-22 

predicted EF value, which was stored in electronic medical records. 23 

Once the AI-S detected the LVD, a warning message was immediately sent to the frontline physician in charge 24 

of the patient and the on-duty cardiologist. A notification appeared on the recipient's smartphone message 25 

system to prompt attention during the shift. The short message was triggered only once for the earliest 26 

triggering rule and was not triggered by negative samples after multiple background calculations by AI-S. The 27 

Jo
urn

al 
Pre-

pro
of



6 
 

study cohort was then categorized based on the risk of LVD predicted by the AI-S, and physicians determined 1 

whether the patient required a cardiac ultrasound examination. 2 

Study Outcomes 3 

The primary analysis aimed to evaluate the performance of the AI-S for LVD detection using the F-measure, 4 

precision, and recall, whereas the secondary analysis assessed the risk of future adverse events (such as all-5 

cause mortality, hospitalization, and emergency department visits) in patients with and without 6 

echocardiograms. Additionally, cardiovascular events, including HF, atrial fibrillation, coronary artery disease, 7 

stroke, and acute myocardial infarction, were calculated. 8 

Cost-effectiveness Analysis and Assumptions 9 

To evaluate the cost-effectiveness of AI-enabled ECG (AI-ECG) screening for asymptomatic LVD compared 10 

to no screening, we used a decision analytic model incorporating Markov processes to simulate a cohort of 11 

65-year-old patients followed up over the rest of their projected remaining lifetime horizon. Due to disease 12 

prevalence and health checkups policies in Taiwan, we focused our analysis on individuals aged 65 as the 13 

base-case scenario. The structure of the cost-effectiveness analysis used in this study was adopted from the 14 

literature11. The healthcare payer’s perspective was chosen. The decision analytic model consists of a decision 15 

tree and a Markov model, taking into consideration the prevalence of asymptomatic LVD, AI-ECG screening 16 

performance, costs, and outcomes related to early intervention. This includes the associated costs and effects 17 

of LVD and HF on long-term mortality and quality of life. The short-term decision tree model is illustrated in 18 

the left part of Figure 1. Positive AI screening would lead to transthoracic echocardiography to confirm true-19 

positive cases or rule out false-positive cases of asymptomatic LVD. After the confirmation of LVD through 20 

echocardiography, a thallium myocardial perfusion scan was conducted as a post-confirmatory test to evaluate 21 

the presence of coronary artery disease. The hypothetical cohort entered the Markov model in one of three 22 

health states following screening: (1) treated with asymptomatic LVD if positively screened using AI 23 

algorithm and TTE (true positive); (2) untreated with asymptomatic LVD if AI algorithm failed to detect 24 

existing condition (false negative); or (3) untreated without asymptomatic LVD if the condition was absent. 25 

As shown in the right section of Figure 1, those treated and untreated for asymptomatic LVD could progress 26 

to symptomatic heart failure, leading all individuals to be treated upon disease advancement. Additionally, 27 
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transitions to a dead state can occur annually from any of the predefined health conditions, following specified 1 

transition probabilities. 2 

Health Outcomes, Costs and Discounting 3 

Table 1 summarized estimated values of the AI-ECG performance, health outcomes, costs, utilities, and other 4 

factors in the model. The AI-ECG performance in detecting medium- and high-risk groups in the internal 5 

validation cohort was applied to the model. The sensitivity of AI-ECG for detecting medium risk of 6 

asymptomatic LVD was 0.926 (standard error [SE]:0.042), with a specificity of 0.927 (SE:0.003). The 7 

sensitivity and specificity for the detection of high-risk patients were 0.630 (SE:0.154) and 0.987 (SE:0.002), 8 

respectively. In this analysis, the prevalence of asymptomatic LVD was set at 1.6% among the 65-year-old 9 

cohort in Taiwan, according to the published literature13. Individuals were simulated to receive treatment for 10 

asymptomatic LVD using a combination of angiotensin-converting enzyme inhibitors (ACEi) and beta 11 

blockers. Annual transition probabilities to symptomatic heart failure from treated and untreated patients and 12 

their utility scores were built mainly on data used in previous studies and their calculations11. The transition 13 

of patients without LVD on initial screening to death is accounted for the age and sex-specific survival of 14 

general population, according to the Taiwan life tables14. 15 

The cost of the AI-ECG was assumed to be the same as that of an electrocardiogram ($ 4.96) in the base case 16 

and increased to five times higher in the sensitivity analysis as it is still unclear how to set the price of AI-17 

ECG. The costs of health resources were calculated based on Taiwan National Health Insurance, as presented 18 

in Table 1. Cost and effectiveness were both discounted at 1.5%. Discounting accounts for time preference, 19 

with higher costs being valued or effectiveness gains being realized now rather than later. 20 

Analytical methods 21 

One-way deterministic sensitivity analyses were performed to evaluate the robustness of the model with 22 

respect to the starting ages of cohort, costs of AI-ECG screening, diagnosis, outpatient attendance, 23 

hospitalization, treatment, the performance of AI-ECG and discounting rates. To better assess the covariate 24 

uncertainty, a probabilistic sensitivity analysis was conducted. Probability distributions were assigned to each 25 

of the input variables; the estimate mean values, estimated standard errors, and types of distribution for each 26 

variable. Probabilities and utilities were modelled using beta distributions, as these take on values between 0 27 
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and 1. In contrast, costs were modelled as gamma distributions, which are non-negative, right-tailed 1 

distributions that are well-suited to modeling costs. Point estimates for ICER were calculated using a Monte 2 

Carlo simulation of 5,000 iterations of parameters from their estimated probability distributions. The model 3 

was constructed and analyzed using TreeAge Pro version 2022. Costs were converted to USD according to 4 

the currency rate obtained from the Bank of Taiwan on January 16, 2023. Consolidated Health Economic 5 

Evaluation Reporting Standards (CHEERS) checklist and Canadian Agency for Drugs and Technologies in 6 

Health (CADTH) recommendations were used to serves as evidence of our adherence to the reporting elements 7 

outlined in the CHEERS guidelines15 and to ensure the generalizability to Canadian standard (Table S2 to S3).  8 

Statistical Analysis 9 

Patient characteristics are presented as means with standard deviations, numbers of patients, or percentages, 10 

as appropriate. Comparisons between groups were made using either the student’s t-test or the chi-square test, 11 

depending on the type of data being analyzed. Cox proportional hazards models adjusted for gender and age 12 

were used, presenting standardized hazard ratios (HRs) and their corresponding 95% confidence intervals 13 

(CIs). A normality distribution test was conducted using the "nortest" package. Statistical analysis was carried 14 

out using R software version 3.4.4, and a significance level of p < 0.05 was used throughout the analysis.   15 
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Results 1 

AI-S Prediction and Future Echocardiograms 2 

In this study, 29,137 patients were recruited and categorized based on their risk levels for LVD predicted by 3 

the AI-S. Of these patients, 244 (0.84%) were classified as high-risk, 974 (3.34%) as medium-risk, and 27,919 4 

(95.82%) as low-risk. The number of echocardiographic examinations in each risk group was calculated, as 5 

shown in Figure 2. The patients recruited in the academic center were considered the internal validation cohort, 6 

while those in the district hospital were regarded as the external validation cohort. The high-risk group had a 7 

higher proportion of men, older age, and comorbidities than did the low- and medium-risk groups, as shown 8 

in Table S1. Moreover, in the internal validation set, the high- and medium-risk groups had a higher proportion 9 

of patients who underwent echocardiography within 28 days (42.7% and 40.4%, respectively) than the low-10 

risk group (24.5% at 28 days) (Figure 3). The adjusted HR for receiving an echocardiogram within 28 days 11 

was 1.93 (95% CI:1.54-2.41) and 1.77 (95% CI:1.57-2.00) for the high-risk and medium-risk groups, 12 

respectively. Both the internal and external validation sets showed similar results. Furthermore, among 13 

patients who were not initially scheduled to undergo an echocardiogram within 28 days, the high- and 14 

medium-risk groups underwent more echocardiograms (high-risk, 46.2%; medium-risk, 31.4%) within 12 15 

months than the low-risk groups (low-risk, 14.6%) (Figure 3).  16 

The Performance of AI-S for LVD Detection 17 

In the medium-risk group, the AI-S was able to predict an LVEF <= 40% by 12-lead ECG with an AUC of 18 

0.984, a sensitivity of 92.6%, a specificity of 93.8%, a positive predictive value (PPV) of 6.9%, and a negative 19 

predictive value of 100% in the internal validation cohort. In the high-risk group, the AI-S achieved an F-score 20 

of 0.321, sensitivity of 63.0%, specificity of 98.9%, and PPV of 21.5% for identifying LVD. The AI-S also 21 

demonstrated robust performance, with an AUC of 0.945 in the external validation cohort, as shown in Figure 22 

4. Additionally, the proportion of patients being diagnosed with an EF <= 40% within 12 months was 23 

significantly higher in the high-risk (26.2% and 17.9%) and medium-risk (3.4% and 2.5%) groups compared 24 

to the low-risk group (0.1% and 0.2%), in the internal and external validation sets, respectively. The adjusted 25 

HR for the diagnosis of LVD in the high-risk group was 65397.04 and 82.92 in the internal and external 26 

validation sets, respectively (Figure 5). Moreover, significant abnormal findings on echocardiograms, such as 27 
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moderate-to-severe valvular heart disease or pulmonary artery systolic pressure greater than 50 mmHg, were 1 

more likely to be found in the medium- or high-risk groups than in the low-risk group (Figure S1). Although 2 

the presented AI algorithm's performance was limited to patients who received echocardiograms within 28 3 

days, as the follow-up period extended to 12 months, the performance of the AI algorithm to detect LVD in 4 

this subgroup remained consistent (Figure S2 to S4). 5 

We also assessed the prognostic capability of the AI-S in predicting future adverse events, including all-cause 6 

mortality, hospitalization, emergency department visits, and cardiovascular events, in patients who underwent 7 

an echocardiography exam as well as in those who did not, as depicted in Figures S5 to S8. The AI-S exhibited 8 

promising diagnostic and prognostic performance in screening for LVD and predicting future adverse events 9 

in patients undergoing ECG at the OPD or health checkups.  10 

Cost-Effectiveness Analysis 11 

In the base-case scenario, AI-ECG screening of 5,000 individuals resulted in 56 HF cases (33.5%) and 52 12 

deaths (31.1%) cumulatively within the first 4 years among the 167 LVD individuals. In contrast, among those 13 

who were not screened for LVD, there were 70 HF cases (41.0%) and 51 deaths (30.1%) in the first 4 years 14 

among 170 individuals with LVD.  15 

Regarding cost-effectiveness (Table 2), AI-ECG screening showed dominance, with lower average costs for 16 

the entire simulated AI-ECG group compared to non-screened patients. This pattern held true for both 17 

medium-risk and high-risk groups. In the medium-risk category, AI-ECG resulted in average cost reduction 18 

of $44 per patient, alongside a slight increase in quality-adjusted life years (QALYs) expectancy (0.006 19 

QALYs gained per patient), yielding a negative ICER of -$7,439. This cost-saving effect was notably 20 

pronounced in men. While AI-ECG screening cost slightly more for women compared to no screening ($111 21 

vs. $104) and had marginal QALY gains, the resulting ICER of $6,262 indicates continued cost-effectiveness. 22 

One-way sensitivity analysis (Figure S9) revealed that the costs of outpatient attendance, treatment (ACEi and 23 

beta-blockers), hospitalization, asymptomatic LVD evaluation (post-confirmatory testing) and the specificity 24 

of AI-ECG had a significant effect on cost-effectiveness. Higher costs of outpatient attendance and 25 

hospitalization due to HF increased cost-effectiveness (ie, screening for asymptomatic LVD avoids more 26 

subsequent HF than no screening), whereas higher costs of treatment and asymptomatic LVD evaluation 27 
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deceased cost-effectiveness. Of note, even the cost of AI-ECG screening was raised to 500% of the current 1 

cost, AI-ECG screening for asymptomatic LVD was still dominant over no screening.  2 

In the probabilistic sensitivity analysis, Figure 6 graphically illustrates that 62.8% of the 5,000 simulations 3 

resulted in estimates for AI-ECG screening that were both more effective and less costly compared to no 4 

screening. Furthermore, for a willingness-to-pay of $30,000, most simulations (91.5%) yielded ICERs below 5 

the threshold. The cost-effectiveness increased even more for payers with a WTP exceeding 0 dollar/year 6 

(Figure 6B). Analysis of AI-ECG screening for asymptomatic LVD across various age groups consistently 7 

revealed cost-effective outcomes from age 45 onward, irrespective of sex and risk stratification strategies 8 

(Table 2). Optimal cost-effectiveness was observed with screening at age 65. These findings underscore the 9 

efficacy of widespread AI-ECG screening for detecting asymptomatic LVD.  10 
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Discussion 1 

In this study, we conducted a prospective assessment of an AI-ECG to screen for LVEF <= 40% in patients at 2 

OPD or health checkups. The algorithm demonstrated high accuracy in detecting LVD, with AUCs of 0.984 3 

and 0.945 for the internal and external validation sets, respectively. By stratifying patients into high-, medium-, 4 

and low-risk categories, the algorithm could detect those susceptible to LVD early. Additionally, among 5 

patients who were not initially scheduled to receive an echocardiogram, the algorithm accurately predicted the 6 

need for future echocardiograms as well as the risk of LVD and cardiovascular adverse events within one year. 7 

Using this powerful AI screening tool, we analyzed the cost-effectiveness of AI-enabled ECG screening for 8 

asymptomatic LVD compared with no screening in different age groups. The results showed that screening 9 

for asymptomatic LVD with the algorithm can lead to an improvement in QALYs and a reduction in medical 10 

costs by preventing future incident heart failure and associated costs, particularly in patients over the age of 11 

65. To the best of our knowledge, this is the first study to evaluate the cost-effectiveness of asymptomatic 12 

LVD screening using AI-enabled ECG in a country with social insurance, indicating comprehensive insurance 13 

coverage and relatively low healthcare costs. These findings suggest that AI-ECG could be widely applied in 14 

clinical practice for the detection of asymptomatic LVD, resulting in improved patient outcomes and cost 15 

savings. 16 

The AI algorithms used in ECG for LVD detection have been widely proposed in recent years. Yao et al. 17 

conducted a randomized controlled trial involving 22,641 patients to compare the diagnostic rate of LVEF <= 18 

50% within 90 days of ECG between an AI-assisted group and a usual care group16. Compared to usual care, 19 

physicians with additional information from AI-ECG predictions could identify 32% more patients with LVEF 20 

<=50% using similar echocardiogram utilization rates between the two groups (18.2% in usual care and 19.2% 21 

in the AI-assisted group, P = 0.17)16. Similarly, another study prospectively enrolled 16,056 patients and used 22 

AI-enabled ECG to detect EF <= 35%.17 The algorithm detected patients with LVEF <=35% with an AUC of 23 

0.918 and 39.8% of the false-positive results had an LVEF of 36% to 50%.17 Compared to previous studies, 24 

our study prospectively included 29,137 patients without previous cardiac evaluation, of whom 7,645 (26%) 25 

received echocardiograms within 28 days. The algorithm accurately identified patients who required an 26 

echocardiogram in advance in both the internal and external validation cohorts. Among patients who were not 27 
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initially scheduled for echocardiography, the high-risk group identified by the AI underwent more 1 

echocardiograms during the follow-up period. Moreover, patients with normal LVEF but a high risk predicted 2 

by the AI had more structural abnormalities on echocardiograms. In clinical practice, physicians may 3 

encounter asymptomatic patients without traditional risk factors for LVD but with a positive AI alarm. With 4 

the risk stratification provided by our AI model, physicians can comprehensively evaluate the possibility of 5 

LVD and arrange subsequent examinations and treatments precisely. 6 

The performance of the AI models in screening for various cardiovascular diseases was comparable to that of 7 

cardiologists. Moreover, the cost-effectiveness of opportunistic screening using these algorithms is promising. 8 

For instance, Pickhardt et al. conducted a cost-effectiveness analysis of an AI-based cardiovascular disease 9 

screening using abdominal computed tomography (CT).18 The algorithm was able to automatically quantify 10 

abdominal aortic calcium; based on the results, moderate-to high-intensity statin treatment was recommended. 11 

Compared to the no-screening group, opportunistic screening using an AI-assisted CT scan was found to be a 12 

clinically effective and cost-saving strategy.18  13 

In the case of diagnosing asymptomatic LVD, AI-enabled ECG has demonstrated excellent diagnostic ability 14 

compared to previous risk-prediction scoring models19. Because AI-ECG provides significant diagnostic 15 

improvements compared to usual care, the cost-effectiveness of AI in detecting asymptomatic LVD should be 16 

remarkable. In our model, early identification of asymptomatic LVD and subsequent intervention resulted in 17 

the avoidance of more cases of HF compared to the control group. Consequently, AI-ECG screening 18 

demonstrated dominance, with lower average costs and higher QALYs gained for the entire simulated AI-19 

ECG group when compared to non-screened patients. Even with uncertainty in AI-ECG costs and potential 20 

variations in interventions, AI-ECG screening for asymptomatic LVD remained dominant compared to no 21 

screening, even when AI screening and healthcare costs increased fivefold from the base-case costs. 22 

Furthermore, it is noteworthy that increased costs associated with outpatient attendance and hospitalization 23 

resulting from HF contribute to improved cost-effectiveness. Conversely, escalated costs related to treatment 24 

and asymptomatic LVD evaluation have the opposite effect, diminishing cost-effectiveness. The probabilistic 25 

sensitivity analysis reveals that in 62.8% of the 5,000 simulations, the estimates for AI-ECG screening 26 

indicated both greater effectiveness and lower costs when compared to no screening. While the WTP threshold 27 
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can vary in different countries and may not be a critical criterion for decision-making, the results suggest that 1 

cost-effectiveness improved even further for payers with a WTP exceeding $0 per year. Moreover, the 2 

probability of AI-ECG screening being considered acceptable was higher than 91.5% under a threshold of 3 

$30,000 and did not change significantly beyond this threshold.  4 

Our study has several limitations. First, the lack of a control group posed challenges in assessing AI-ECG 5 

screening's effectiveness. Therefore, we used economic modeling to compare its cost-effectiveness against no 6 

screening. Although our focus was asymptomatic LVD detection, inclusion of mildly symptomatic patients 7 

might have impacted algorithm accuracy. Additionally, the extra cost of implementing the AI algorithm was 8 

not counted in the economic modeling. Despite AI-ECG pricing uncertainty, AI-ECG screening remained 9 

dominant over no screening even when assuming an ECG cost increase of up to 500% in the sensitivity 10 

analysis. Finally, transition and treatment data relied on a 30-year-old study, as recent relevant trials are absent. 11 

Due to the limitations of available data, our economic model is not exhaustive. Robust post-AI implementation 12 

studies are needed to assess real-world cost-effectiveness comprehensively.  13 

 14 

In conclusion, the algorithm using ECG demonstrated high accuracy in detecting LVEF <= 40%, and the risk 15 

stratification predicted by AI suggested the probability of being diagnosed with LVD in both the short and 16 

long terms. Applying AI-ECG for systemic asymptomatic LVD screening could be cost-saving, especially in 17 

men, in a social insurance country.  18 
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Table 1. Summary of Model and Parameter Estimates 

Factor Estimate (SE) Distribution 

modelled 

Source 

Prevalence of asymptomatic LVD  Uniform Wang et al. 13 

Age 40-59, Man; Woman 0.0084; 0.0020   

Age 60-69, Man; Woman 0.0288; 0.0032   

Age 70-79, Man; Woman 0.0452; 0.0040   

Age 80-99, Man; Woman 0.0572; 0.0076   

Probabilities and outcomes 

Sensitivity of AI (medium and high 

risk) 

0.926 (0.042) Beta  

Specificity of AI (medium and high 

risk) 

0.938 (0.003) Beta  

Sensitivity of AI (high risk) 0.630 (0.154) Beta  

Specificity of AI (high risk) 0.989 (0.002) Beta  

The annual transition from 

asymptomatic LVD to HF without 

treatment 

0.098 (0.026) Beta SOLVD  

Investigators20 

The annual transition from 

asymptomatic LVD to HF with 

0.065 (0.011) Beta SOLVD  

Investigators20 

Jo
urn

al 
Pre-

pro
of



19 
 

treatment 

Annual probability of HF 

hospitalization 

0.33 (0.13) Beta SOLVD  

Investigators20, 21 

Annual subsequent HF hospitalization 0.11 (0.05) Beta SOLVD  

Investigators20, 21 

Utility score for asymptomatic LVD 

without treatment 

0.855 (0.005) Beta Göhler et al.22 

Utility score for asymptomatic LVD 

with treatment 

0.855 (0.005) Beta Göhler et al.22 

Utility score for HF 0.771 (0.005) Beta Göhler et al.22 

Additional mortality risk of 

asymptomatic LVD compared to no 

asymptomatic LVD (without treatment) 

3.3 (1-4) Uniform SOLVD  

Investigators20 

Additional mortality risk of 

asymptomatic LVD compared to no  

asymptomatic LVD (with treatment) 

2.9 (1-4) Uniform SOLVD  

Investigators20 

Additional mortality risk of HF 

compared to no asymptomatic LVD. 

4.9 (3-9) Uniform Heidenreich et al. 23 

Age-specific mortality Taiwan Life Tables14 

Costs (2022 USD) 
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Screening with AI algorithm 4.96 Uniform NHIRD 

Screening with TTE 62.50 Uniform NHIRD 

asymptomatic LVD evaluation (post-

confirmatory testing) 

209.26 Uniform NHIRD 

Annual costs of ACEi and BB treatment 172.82 Uniform NHIRD 

Cost of HF hospitalization 2,887 (1,444) Gamma Liao et al.24 

Annual cost of outpatient HF 

management 

5,400 (2,700) Gamma Liao et al.24 

Discounting 

Costs 1.5% Uniform Assumption 

Outcomes 1.5% Uniform Assumption 

Abbreviations: ACEi, angiotensin-converting enzyme inhibitor; AI, artificial intelligence; LVD, left 

ventricular dysfunction; BB, beta blocker; HF, heart failure; NHIRD, National Health Insurance Research 

Database of Taiwan; SOLVD, Studies of Left Ventricular Dysfunction; TTE, transthoracic echocardiogram 
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Table 2. Cost, Effect, and Incremental Cost-Effectiveness Ratio of Screening with Artificial 

Intelligence Algorithm Versus No Screen for Age of 65 and Other Age Groups 

Strategy Cost (USD) Effect (QALYs) ICER (USD) 

No screening (base-case: age 65) 

All 487 14.636 reference 

Man 826 13.844 reference 

Woman 104 15.500 reference 

Screening with AI-ECG (base-case: age 65, Strategy 1)  

All 443 14.642 -7,439, dominant 

Man 735 13.854 -9,062, dominant 

Woman 111 15.501 6,262 

Screening with AI-ECG (base-case: age 65, Strategy 2) 

All 455 14.640 -8,081, dominant 

Man 765 13.851 -9,000, dominant 

Woman 103 15.500 -688, dominant 

No screening (age 45) 

All 275 26.463 reference 

Man 427 25.243 reference 

Woman 111 27.806 reference 

Screening with AI-ECG (age 45, Strategy 1)  

All 275 26.466 -1,051, dominant 

Man 408 25.249 -3,317, dominant 

Woman 122 27.808 77,738 

Screening with AI-ECG (age 45, Strategy 2) 

All 268 26.465 -2,806, dominant 

Man 411 25.247 -4,120, dominant 

Woman 113 27.807 2,007 

No screening (age 55) 

All 227 20.796 reference 

Man 348 19.733 reference 

Woman 92 21.963 reference 

Screening with AI-ECG (age 55, Strategy 1)  

All 223 20.796 -1,263, dominant 

Man 330 19.737 -3,392, dominant 

Woman 104 21.965 9,592 

Screening with AI-ECG (age 55, Strategy 2) 

All 220 20.798 -3,697, dominant 

Man 332 19.736 -5,247, dominant 

Woman 94 21.964 2,209 

No screening (age 75) 
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All 345 8.206 reference 

Man 602 7.837 reference 

Woman 59 8.604 reference 

Screening with AI-ECG (age 75, Strategy 1)  

All 345 7.664 -7,149, dominant 

Man 538 7.844 -9,579, dominant 

Woman 73 8.605 20,104 

Screening with AI-ECG (age 75, Strategy 2) 

All 323 8.209 -8,571, dominant 

Man 557 7.841 -9,877, dominant 

Woman 62 8.605 6,039 

Abbreviations: AI, artificial intelligence; ICER, incremental cost-effectiveness ratio; USD, United States 

Dollar; QALY, quality-adjusted life years. Strategy 1, patients with medium risk or high risk of LVD 

stratified by AI-ECG receive echocardiograms. Strategy 2, patients with high risk of LVD stratified by AI-

ECG receive echocardiograms. 
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Figure legends: 1 

 2 

Figure 1. The structure of the decision analytic model. The first part follows a decision tree that represents the 3 

screening outcome. The second part consists of a Markov structure where patients’ costs and effects are 4 

simulated for the analyzed horizon. The model was adopted from Tseng et al.11 Abbreviations: AI, artificial 5 

intelligence; ALVD, asymptomatic left ventricular dysfunction; TTE, transthoracic echocardiography. 6 

 7 

Figure 2. Flowchart depicting the enrollment process of patients who underwent artificial intelligence (AI)-8 

ECG risk stratification followed by echocardiograms. 9 

  10 

Figure 3. Timing, number and hazard ratio of patients who received echocardiograms after the index ECG in 11 

each risk group. The left side of the figure presents the proportions of patients who underwent 12 

echocardiograms in the internal and external validation sets, respectively. On the right side of the figure, the 13 

proportions of patients who did not undergo echocardiograms within 28 days but later had subsequent 14 

echocardiograms are depicted. Adj HR, adjusted hazard ratio; ECHO, echocardiogram.  15 

  16 

Figure 4. The area under the receiver operating characteristic (AUC) and area under the precision-recall curve 17 

(PRAUC) of DLMs predictions based on AI-S to detect LVEF. The LVEF is defined as an actual EF value ≤ 18 

40%. The operating point for medium risk was selected using the maximum of Youden's index of AUC (the 19 

sum of sensitivity and specificity), while for high risk, it was selected using the maximum of Youden's index 20 

of PRAUC (the sum of positive predictive value and sensitivity) within the tuning set. The corresponding 21 
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operating points are marked by circles, and associated metrics such as AUC, PRAUC, sensitivity (Sens.), 1 

specificity (Spec.), positive predictive value (PPV), and negative predictive value (NPV) are calculated 2 

accordingly. DLM, deep learning model. 3 

 4 

Figure 5. The timing, number, and hazard ratio of patients diagnosed with LVEF ≤40% after the index ECG 5 

in each risk group. Adj HR, adjusted hazard ratio; C-index, concordance index; LVEF, left ventricular ejection 6 

fraction.  7 

 8 

Figure 6. Cost-effectiveness of AI-ECG screening vs. no screening for asymptomatic left ventricular 9 

dysfunction. (A) The incremental cost-effectiveness (ICE) scatterplot depicts the distribution of 5000 10 

simulations, with dots colored red indicating non-cost-effective and those colored green indicating cost-11 

effective. AI-ECG Screening for LVD was found to be cost-effective if willingness-to-pay is set to $30,000 in 12 

90.9% of the simulations. AI-ECG Screening for LVD was dominant (QALY gained and cost saved) in 62.4% 13 

of the simulations. (B) The cost-effectiveness (CE) acceptability curve depicts the probability of AI-ECG 14 

screening being acceptable in terms of the cost-effectiveness depending on the willingness-to-pay threshold 15 

of a payer. The range of willingness-to-pay was expanded from 0 to USD 10,000 and did not considerably 16 

change beyond this threshold. 17 
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